Anlagenummer: 2447/04 zum Gutachten vom: 20.07.2009

Exemplarische Bemessung von Versickerungsanlagen

A138-XP

Dipl.-Ing. Fred G. Müller Poststraße 12a 40721 Hilden

Dimensionierung von Versickerungsanlagen

Datum 14.07.2009

Lizenznr.: 301-0402-0231

Projekt

Bezeichnung:

B-Plan Nr. 256 / VEP Nr. 14, Hilden, Niedenstraße / Eichenstraße

Bearbeiter:

Bemerkung:

Beispiel für 100 m² befestigte Fläche, Kiesrigole

Ange	Angeschlossene Flächen								
Nr.	angeschlossene Teilfläche Ae [m²]	mittlerer Abflußbeiwert PsiM [-]	undurchlässige Fläche Au [m²]	Beschreibung der Fläche					
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	100	1	100.00	Dachfläche					
Gesamt	100.00	1.00	100.00						

_		٠			\sim
ப	10	В	$\nu \sim$	m	~ 17
Γ	1.5	ı	NIJ	111	аß
					~

Verwendeter Zuschlagsfaktor fz

1,2

Arbeitsblatt ATV-DVWK-A 138

ATV-

A138-XP

Dipl.-Ing. Fred G. Müller Poststraße 12a 40721 Hilden

Dimensionierung von Versickerungsanlagen

Datum 14.07.2009

Lizenznr.: 301-0402-0231

Projekt

Bezeichnung:

B-Plan Nr. 256 / VEP Nr. 14, Hilden, Niedenstraße / Eichenstraße

Bearbeiter:

Bemerkung:

Beispiel für 100 m² befestigte Fläche, Kiesrigole

Eingangsdaten			
angeschlossene undurchlässige Fläche	Au	100	m²
Höhe der Rigole	h	8.0	m
Breite der Rigole	b	1.2	m
Porenanteil der Kiesfüllung	sR	35	%
wassergesättigte Bodendurchlässigkeit	kf	.00006	m/s
Innendurchmesser des Rohres	di	0.30	m
Aussendurchmesser des Rohres	da	0.31	m
Wasseraustrittsfläche	Aaustritt	180	cm²/m
Anzahl der Rohre		1	
Niederschlagsbelastung	Station	Hilden1052	
	n	0.2	1/a
Zuschlagsfaktor	fz	1,2	

Bemess	Bemessung der Versickerungsrigole					
D [min]	rDT(n) [l/(s·ha)]	L [m]	Erforderliche Größe der Anlage			
5	392.2	3.6				
10	251.9	4.4	Gesamtspeicherkoeffizient			
15	194.5	4.9				
20	161.8	5.2	$s_{RR} = \frac{s_R}{b \cdot h} \cdot b \cdot h + n \cdot \frac{\pi}{4} \cdot \left(\frac{1}{s_0} \cdot d_1^2 - d_a^2\right)$			
30	124.9	5.6	The state of the s			
45	96.5	5.8	natuandiga Digalanlänga			
60	80.3	5.9	notwendige Rigolenlänge			
90	58.6	5.5	L = 5.9 m $L = \frac{A_{U} \cdot 10^{-7} \cdot r_{D(n)}}{b \cdot h \cdot s_{RR} + (b + \frac{h}{2}) \cdot \frac{k_{f}}{2}}$			
120	46.8	5.1	$D \cdot 60 \cdot f_{-} + (b+2) \cdot 2$			
180	34.2	4.4	effektives Rigolenspeichervolumen			
240	27.4	3.9	energives (Ngolenspeichervolumen			
360	20.0	3.2	V = 2.2 m ³			
540	14.6	2.5				
720	11.7	2.1	Nachweis des ausreichenden Wasseraustritts			
1080	8.2	1.6	INACHIWEIS DES AUSTEICHEHUEH WASSELAUSTHES			
1440	6.5	1.3	Qaustritt = 10.6 l/s > Qzu = 2.0 l/s			
2880	3.7	0.7				
4320	2.9	0.6				

A138-XP Dipl.-Ing. Fred G. Müller Poststraße 12a 40721 Hilden

Dimensionierung von Versickerungsanlagen

Datum 14.07.2009

Lizenznr.: 301-0402-0231

Projekt

Bezeichnung:

B-Plan Nr. 256 / VEP Nr. 14, Hilden, Niedenstraße / Eichenstraße

Bearbeiter:

Bemerkung:

Beispiel für 100 m² befestigte Fläche, Füllkörperrigole

Ange	Angeschlossene Flächen							
Nr.	angeschlossene Teilfläche Ae [m²]	mittlerer Abflußbeiwert PsiM [-]	undurchlässige Fläche Au [m²]	Beschreibung der Fläche				
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	100	1	100.00	Dachfläche				
Gesamt	100.00	1.00	100.00					

_		٠.				\sim
R	10	١Ļ	$^{\circ}$	m	2	K
	ı		ヽ∪	111	u	ı

Verwendeter Zuschlagsfaktor fz

1,2

ATV-P DVVVK

A138-XP

Dipl.-Ing. Fred G. Müller Poststraße 12a 40721 Hilden

Dimensionierung von Versickerungsanlagen

Datum 14.07.2009

Lizenznr.: 301-0402-0231

Projekt

Bezeichnung:

B-Plan Nr. 256 / VEP Nr. 14, Hilden, Niedenstraße / Eichenstraße

Bearbeiter:

Bemerkung:

Beispiel für 100 m² befestigte Fläche, Füllkörperrigole

Eingangsdaten			
angeschlossene undurchlässige Fläche	Au	100	m²
Höhe der Rigole	h	0.6	m
Breite der Rigole	b	1.2	m
Porenanteil der Kiesfüllung	sR	95	%
wassergesättigte Bodendurchlässigkeit	kf	.00006	m/s
Innendurchmesser des Rohres	di		m
Aussendurchmesser des Rohres	da		m
Wasseraustrittsfläche	Aaustritt		cm²/m
Anzahl der Rohre		0	
Niederschlagsbelastung	Station	Hilden1052	
	n	0.2	1/a
Zuschlagsfaktor	fz	1,2	

Bemessung der Versickerungsrigole				
D [min]	rDT(n) [l/(s·ha)]	L [m]	Erforderliche Größe der Anlage	
5 10 15 20 30 45 60 90 120 180 240 360 540 720 1080 1440 2880 4320	392.2 251.9 194.5 161.8 124.9 96.5 80.3 58.6 46.8 34.2 27.4 20.0 14.6 11.7 8.2 6.5 3.7 2.9	2.0 2.5 2.9 3.1 3.5 3.8 3.9 3.9 3.8 3.5 3.2 2.8 2.3 2.0 1.5 1.3 0.8 0.6	$ \begin{array}{ll} \underline{Gesamtspeicherkoeffizient} \\ \mathbf{sRR} = \mathbf{95\%} \\ \mathbf{s}_{RR} = \frac{s_R}{b \cdot h} \cdot b \cdot h + n \cdot \frac{\pi}{4} \cdot \left(\frac{1}{s_R} \cdot d_i^2 - d_a^2\right) \Big] \\ \underline{notwendigeRigolenlänge} \\ \mathbf{L} = \mathbf{3.9m} \\ \mathbf{L} = \frac{A_U \cdot 10^{-7} \cdot r_{D(n)}}{b \cdot h \cdot s_{RR}} + (b + \frac{h}{2}) \cdot \frac{k_f}{2} \\ \underline{notwendigeRigolenspeichervolumen} \\ \mathbf{V} = \mathbf{2.7m}^3 \\ \end{array} $	
2880	3.7	0.8		